

 Czech University of Agriculture in Prague

Faculty of Economics and Management
Department of Information Engineering

Operating Systems

Doc. Ing. Arnošt Veselý, CSc.

Prague 11.2.2005

Contents
CONTENTS ... 3
OPERATING SYSTEM (OS) .. 4
DESIGN OF THE UNIX OS (BASIC CONCEPTS) 11
UNIX FILESYSTEM .. 26
UNIX PROCESSES ... 42
UNIX SYSTEM CALLS FOR PROCESS CONTROL 54
UNIX FILE MANAGER SYSTEM CALLS ... 69
COMMUNICATION SUPPORT ... 79
REFERENCES .. 97

3

Operating system (OS)
OS consists of:
1. kernel
2. system programs
Kernel tasks:
1. Creates processes and controls their execution
2. Facilitates communication among processes
3. Provides means for work with I/O devices
4. Part of the kernel is a file manager, which organizes disc data into files and

directories
5. Overviews the system and records logs and different statistics

Unix consists of:
Kernel
System programs and libraries:
• shells(sh, bash, ksh, csh, tcsh)
• programs for file and directory manipulation (ls, cp, rm, tar, etc.)
• programming support (compilers, libraries)
• communication support (telnet, ftp, rlogin etc.)
• graphical interfaces (X-Windows, Open Windows)

Kernel

hardware

sh

novak.prog
cp

ls

csh

4

Basic concepts
Program: executable file on disc
Process: running program

stack

initialized data
noninitialized data

text

data

Fig. Process structure

magic number

header

text of program

inicialized data

Fig. Structure of a target program on disc.

5

Basic process states

4 3
Ready to run

sleep

Kernel
running

User running

wakeup

Fig. Basic process states

1

2

preemption

reschedule

 interrupt

interrupt

return

Asleep

Process is asleep in memory (blocked) if it has not a resource, which is
indispensable for its farther correct execution

6

OS activity after interrupt

external interrupt: I/O devices
inner interrupt:
• processor running errors (i.e. overflow, dividing by zero)

• running instruction of inner interrupt

Interrupt handler

Process A

Run in user mode

Fig. Process transition from user to kernel mode runing

Run in kernel mode

interrupt
return from

interrupt

7

System services (calls)

Every OS provides services to processes. System services can be realized by a
subroutine call or internal interrupt.

1. System services in Unix are realized by means of internal interrupt.
2. System service is a function that contains instruction for internal interrupt.

As soon as this instruction is executed the process changes the mode of
running: it passes from user to kernel running. In kernel mode process
executes code of the kernel (code of the system call).

3. System calls cannot be programmed in C language; they must be
programmed in assembler.

system call code

system call
recognition

Process A

Run in user mode

Fig. Process transition from user to kernel mode runnig

Run in kernel mode

inner interrupt
return from inner

interrupt

8

Preemption
Process can run continuously only for limited time interval (time quantum).
After this interval is expired, kernel stops the process and puts it into ready to
run state. Then scheduler chooses another process for running. The former
process is said to be preempted.
The kernel is not preemptive: If a process is running in kernel mode, it cannot
be preempted. (The reason is to exclude a possibility of time dependence of
processes (race conditions)). Process running in kernel mode at first finishes
kernel running (system service) and when it returns to user running, the control
is given to scheduler and a new process could be scheduled.
Context switch: If another process is scheduled, kernel must swap user and
system contexts of old process for user and system contexts of new one.

External interrupts
External interrupts are executed in the context of the interrupted process. Only
system context of interrupted process must be saved and after return from
interrupt it must be restored.
When process is running in kernel mode, some external interrupts have to be
forbidden if race condition could occur.

Example (Unix)
Process A executes system service read() (reading from disc)
1. read() generates internal interrupt. Code of system call starts to be executed.
2. If asked data are not in disc cache in main memory, interrupt handler starts I/

O transfer. Kernel puts process A into asleep state.
3. Process B is scheduled and begins to run.
4. Transfer from disc is finished. Disc module interrupts processor.
5. Interrupt is allowed. Disc interrupt handler is executed. Execution of the

handler code is done in context of process B. At the end of its running
interrupt handler puts process A into ready to run state.

6. Return from interrupt. Process B continues to run.
7. Time quantum for process B has expired and B is preempted. Process A is

scheduled.

9

OS information about processes
OS stores information about processes to be able to control their run.

Unix stores important information about processes into:
1. process table
2. u-area

Fig. Process table and u-area. When a process is scheduled, its u-area
is copied into main memory.

Process A

text

data

stack

Processes

Kernel

Process table

Process A

u-area of process A

Disc

Main memory

u-area in memory

Context of a process
User context: text, data, stack, content of user registers
Systems context: process table, user’s area (u-area), content of system registers,
content of system stack, page table

10

Design of the Unix OS (basic concepts)

Users
User has its username and UID (user identification)
System identifies users according their UID
Superuser is user who has UID=0. Superuser has all privileges to all files and all
processes (with little exceptions)

Users are organized into groups:
Berkeley Unix: Each user can be at maximally member of 16 groups
simultaneously
System V: Each user can be at certain moment only in one group. But he can
change the group by command newgrp.
Basic information about users and groups OS maintains in two files:
/etc/passwd and /etc/group

 username:encrypted password: UID:GID : Note : Home directory:Login shell

..
novak: 1234567890ABC :100:10:Student:/home/novak:/bin/csh
..

Fig. User table /etc/passwd

 groupname : password : GID : list of users
..
 studenti: : 10 :
ukol1 :123456789ABC: 21 :
ukol2 : * : 22 :novak,novy,benes

Fig. Group table /etc/group

11

Files and directories
1. Files are organized into filesystems. Directories are files of special type. By

means of directories files are organized into tree structure. Root of the tree
structure is denoted by / .

2. All files and directories have their user owner and group owner. The first
user owner of a file is the user who created it. Similarly the first group owner
of a file is the group who created it. Further the ownership can be transferred
to another user or group by a system call or command.

3. Access rights control the access to files.
4. Access rights are r, w, x. Their meaning is

regular files:
1. r reading
2. w writing
3. x executing

directories:
1. r reading content of the directory
2. w create and delete files and subdirectories in the directory
3. x enter the directory

Access rights are specified for: individual owner, group owner, others
Specification is written as a sequence of 9 characters:

 r w x r w x r w x

If some right is not given, instead of character r, w, x the character - is used

Example
 r w - r - - r - -

12

individual
owner

others

group owner

Login into system

command

csh

%

login

password:

getty

login: user is not in user table or
he puts in incorrect

password

Fig. User login

13

As everybody can read file /etc/passwd, short passwords of other users can
be cracked by a simple program.

Therefore encrypted user passwords some OS store in the file /etc/shadow
that users cannot read

password is
cracked

crypt(string, salt) = cipfer

generate arbitrary
string

take salt from
/etc/passwd

/etc/passwd
...: s a l t c i p h e r :...

noyes

Fig. Principle of a program for password cracking

14

Compilation of programs
Compilation is done by program cc.
Program cc makes preprocessing and compilation. Then it calls linkage editor
(loader) ld.
During linking process ld looks only through library libc.a. It is possible to
compel ld to look also through other libraries (by setting running parameters l or
L).

directory /usr/includesource program

library /usr/librelative module

program prepared for
compilation

program in machine
code (target module)

Fig. Compilation of a program

linkage editor (ld)

compiler (cc)

preprocessor (cc)

It contains headers
files (i.e. stdio.h)

It contains function
libraries (i.e. libc.a,

libm.s, etc.)

Compilation commands
cc prog.c -lm
cc prog.c -L/usr/lib/libm.a

 cc prog.c -lm -o prog.exe
cc prog.c funkce1.c funkce2.c error.c
cc prog.c funkce1.o funkce2.o error.o
cc prog.c -L/home/novak/lib/lib.a

15

Example of a program

/* cat: version 1 Print file on terminal */
#include <fcntl.h>
#include <stdio.h>
main(argc,argv)

int argc;
char *argv[];

{ int d,count;
char buf[1024];
if(argc != 2){

printf("error: cat must have one
parametr\n");

exit(1);
}
d = open(argv[1],O_RDONLY);
if(d == -1){

printf("cannot open file %s\n", argv[1]);
exit(1);

}
while((count = read(d,buf,sizeof(buf))) > 0)

write(1,buf,count);
return 0 ;

}

Translation and running the program
(program is in the file mycat.c)

$cc mycat.c –o mycat
$mycat /etc/passwd

16

Program execution

Before execution, memory area where noninitialized data reside is zeroed. The
area where stack resides is not reset.
Static initialized variables are stored in initialized data area.
Static noninitialized variables are stored in noninitialized data area.
On stack there are stored:
automatic variables, call parameters and return addresses

address of frame 2

return address

parametrs for open:argv[1],O_RDONLY

address of frame1

local variables d,count,buf

return address

parametrs for main: argc,argv

data

text

Fig. Execution of program: content of stack after calling open()

stack

Process

17

Process creation

System call fork()
1. OS creates a copy of a calling process.
2. Except PID and return value of the call, the child process inherits all user

context of its parent.
3. Return value in parent process is child PID .
4. Return value in child process is 0.

Example
main()

{
int r;
if((r=fork())== 0)

printf("I am child");
/* child */

else
printf("I am parent");

/* parent */
}

Fig. After system call fork() a new process is created

Parent process
PID = 100

Child process
PID = 101

system calls fork()

r equals 101

print: I am parent r equals 0

print: I am child end of process

 end of process

new process is created

18

Example
The following program was executed. How many processes remained in system
in asleep state? (3)

main()
{ (if fork() == 0)

pause();
fork();
pause();

}

Process text change
System call execl() invokes another program.
OS changes text of the calling process.

Example

#include <stdio.h>
main()
{

if(fork()==0)
execl("/bin/date", "date",NULL);

/*child*/
 wait(NULL);

/*parent*/
printf("child process finished\n");

}

1. Child process will be further controlled by the text stored in the file
/bin/date

2. Parent process is waiting for child process exit (it is in asleep state). After the
child exit OS will awake the parent. If in wait() call is supplied a pointer to a
variable, OS will put exit status of the child into this variable.

19

Owner of a process

Processes are not anonymous. With each process the following ownership
parameters are associated:
• real user (UID)

• effective user (EUID)

• real group (GID)

• effective group (EGID)

Real and effective ownership

• After login UID and GID of login shell are set according to the user table.

• User processes inherit their UID and GID from login shell.

• UID and GID are all the time the same.

• At the beginning of a process EUID and EGID are equal to UID and GID.

• During process run and under special circumstances they may be changed
(e.g. if the process executes system call
execl(/path/file,”file”,NULL) and file has set s-bit).

Access rights are checked against effective owners.

20

Signals
There are 32 signals (in older Unix systems only 16) that one process can send
to another process.

system calls
kill() for sending a signal
signal() for catching a signal

command:
kill [-signal] PID

sends a signal number signal to process PID

OS activity during system call kill():
• It writes down into process table the number of the sent signal

• If the process to which the signal has been sent is in asleep state, OS will
awake it

Activity of a process which the signal has been sent to:
• Signal is processed before process run

• Processing of signal depends on whether the reaction on coming signal has
been specified before (by a system call signal())

If the reaction has not been specified, default action is taken.
For most signals default action means abortion of the process (exception: for
signal SIGCHLD(17) and SIGCONT (18) default action means to do nothing).

If the reaction has been specified, the action is taken according to this
specification. Specification could be:

• ignore the sent signal

• run code of signal handler

21

Example
Initial state:
Process A is running
Process C is asleep

Process B sends:
signal 2 to process A
signal 18 (SIGCONT) to process C

Result:
Process A is aborted
Process C is awaken and it will be scheduled and run

100 0 1 0 0

200 0 0 0 1

kill(200,18)

kill(100,2) awake

abort

PID signal field

Process table

B C (PID=100) A (PID=100)

sleep

22

Inputs and outputs

Data input into a process and data output from a process are sequences of
bytes (called streams).

Before working with a stream:
• process must open it using system call open()
• if opening is successful, open() will return small positive number called

descriptor

• further the opened stream is identified by the returned descriptor

Process can read opened file by system call

read(descriptor, read_buffer, number_of_bytes)

Process can write to opened file by system call

write(descriptor, write_buffer, number_of_bytes))

Reading and writing a file

• The reading and writing start from a current position.

• The current position is during reading and writing updated.

• It can be set by system call lseek() to arbitrary value, and that means, that
random access to the bytes in streams is possible.

23

Control files of I/O devices

Physical devices are represented by their control files, stored in /dev
ls -al /dev | more

brw-rw-rw- 1 root floppy 2,0 Oct 20 12:20 fd0H1440
brw-rw---- 1 root disk 3,0 Oct 20 12:20 hda
brw-rw---- 1 root disk 3,1 Oct 20 12:20 hda1
brw-rw---- 1 root disk 3,2 Oct 20 12:20 hda2
crw-rw---- 1 daemon daemon 6,0 Oct 20 12:20 lp0
crw-rw-rw- 1 root disk 9,0 Oct 20 12:20 st0
crw-rw-rw- 1 novak users 5,0 Oct 20 12:20 tty
crw--w--w- 1 novak users 4,1 Oct 20 12:20 tty1

Major number of a device: identification of handler
Major number is defined during configuration of OS (before compilation)
Minor number of a device: serial number of device
By minor numbers OS discriminate among devices controlled by the same
handler
Handlers: with blocked data transfer (disc)

with character transfer (printer, terminal)

Direct manipulation with I/O device
It is possible to work with devices by means of their control files

cp /etc/hosts /dev/tty1
cat /etc/group >/dev/tty
cp /etc/hosts /dev/fd0H1440

Reading and writing control file means jump to device handler, identified with
major number.
Control file does not contain any data. But it has its i-node.

24

Start and shutdown of Unix system
OS can run in one of these regime levels:

0 System halt
1 Single user
2-5 Multiuser
6 Restart

Before OS begins to run at certain level, the process init will run level specific
start scripts.
Which start scripts will run at particular level is defined by the content of
/etc/inittab file

identificator: level: action : command
rc : 2345 : wait : /etc/rc.d/rc.2
net : 345 : wait : /etc/rc.d/rc.net
..
c1 : 2345 : respawn : /sbin/getty 9600 tty1
 Fig. File /etc/inittab .

line rc:
before run at levels 2, 3, 4 or 5 OS will start script /etc/rc.d/rc.2

wait means that OS will wait till the script finishes

line c1:
before run at levels 2, 3, 4 or 5 OS will start program /sbin/getty with run
parameters 9600 and tty1

respawn means that if getty finishes, OS will start it again

One line of /etc/inittab defines implicit run level. Superuser can change
run level by the command.

Shutdown commands:
shutdown -h +time message
shutdown -h now

25

Unix filesystem

Files are organized into filesystems. Several filesystems can reside on one disc.
The whole filesystem must reside on the same disc.

File types:
regular files -
directories d
control files of block I/O devices b
control files of character I/O devices c
link files l

Directories: special files that enable to organize files into tree structure

Fig. Part of directory tree structure

lib

//

passwdgroup

dev

rc.d

vmunix

etc bin

Denotation conventions:
• parent directory ..
• root directory /
• current (working) directory .
• home directory ∼

Identification of files:
complete path /usr/bin/ls
incomplete path bin/ls (starts in current directory)

26

File system organization (Unix SYSTEM V)

Bootblock contains boot program
Superblock contains system information about the filesystem:
• size of filesystem
• size of i-node area
• number of free blocks
• number of free i-nodes
• first block of free blocks list
• first block of i-nodes free list
i-node area:
• all system information about file is stored in i-node
• in a directory there are stored only pairs (filename, i-node number)
• root directory has i-node 2
Data area contains:
• data of files and directories
• address blocks
• free block list
• free i-nodes list

Bootblock

Superblock

i-node area

Data

 . 2

 .. 2

 vmunix 70

 bin 105

 dev 85

 lib 120

Fig. Structure of a filesystem

Directory

27

i-node items
• File type
• Access rights
• User owner (UID)
• Group owner (GUI)
• Time of last write into file
• Time of last access to file (reading or executing)
• Time of last modification of i-node
• Size of file in bytes
• Number of disc blocks necessary to store file on disc
• Number of references (hard links, references) to file
• Addresses of file data blocks

File type

Access rights

UID

GID

Time of last write

Time of last use

Time of last modification of i-node

Size

Number of blocks

Number of links

Addresses of data blocks

Data blocks

Fig. Content of an i-node

28

Allocation of file data on disc

• Block (or cluster) is one or several sectors on disc.

• Numbers of blocks are local in a filesystem.

File manager:
file, byte → filesystem, block number

Disc module

Disc handler:
filesystem, block number → disc, cylinder, surface, sector

Process

disc, cylinder, surface, sector

filesystem, block number

file, byte

• File data are stored in blocks.

• Files must begin at the beginnings of blocks.

• A choice of big blocks may cause wasting of disc space, especially if there are
many small files.

29

0

127

0

127

0

127

0

127

0

127

0

127

0

127

0

127

0

127

0

127

0

127

 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. Record of file data blocks addresses in i-node

30

Maximal size of a file

block is 512 B, block number is in 4B:

max_size = 10×512 + 128×512 + 128×128×512 + 128×128×128×512 ≅ 1GB

Change of ownership:
chown new_username[.new_groupname] filename . . .
chgrp new_group filename . . .

Hard links (references to a file)

system calls:
link() creates a hard link
unlink() deletes a hard link

OS activity during link() system call
1. It creates new directory item of a file (hard link to a file)
2. Number of references to file is increased by 1

OS activity during unlink() system call
1. Directory item of a file is removed
2. The number of hard links to file i-node is decreased by 1. If the new number

of hard links is less than 1, OS puts i-node on i-node free list and data blocks
of the file on data block free list (the file is deleted).

command
ln filename link creates a hard link link to a file identified by

hardlink filename
rm filename . . removes hardlinks filename . .
mv from to moves and possibly renames hardlink from to hardlink

to

31

Program rm
Program rm uses unlink system call for deleting files.
Because numbers of i-nodes are in each filesystem local, it is not possible to
create a hardlink that points outside the filesystem.
It is not possible to create a hard link to a directory because of danger of
looping.

Example
cd /usr/john
ln /etc/passwd data
ln /etc/passwd my.data
cp /etc/passwd data.copy

number of links=1

 passwd 120

/etc/passwd

 data 120

 my.data 120

data.copy 200

/usr/john

Fig. Hard links

number of links=3

inode 120

Data blocks

inode 200

Data blocks

32

Soft Links
Soft link is a special file (type l) containing a path.
command for creating a link file (or link):

ln -s path link
link is a path that determines where the link file will be created
path identifies file which the link will refer to
The content of link file will be path

How OS works with soft links during file search
Link file contains complete path:
Example:
• suppose OS is looking for the file /path1/link/path2
• the content of link file link is complete path /path3
As soon as OS comes to link, it starts to search file /path3/path2
Link file contains incomplete path:
Example:
• suppose OS is looking for the file /path1/link/path2

• the content of link file link is incomplete path path3
As soon as OS comes to link, it starts to search file ./path3/path2

Creation of a directory
Command

mkdir directory . . .
System call

mknod()

OS activity during system call mknod()
• New item in parent directory is created

• Free i-node is allocated for the new directory

• New directory data structure is created

33

Example
A new directory new_directory is created in a directory old_directory
(i-node=100)

 . 200
. . 100

 . 100
. . 110

new_directory 200

 3

 2

number of references
on a new directory

equals 2

number of references
on parent directory is

increased by 1

200

inode

100

inode area

new_directory

old_directory

• At the beginning there are 2 references on each newly created directory.

• If a new subdirectory is created, number of references to its parent directory is
increased by 1.

34

Access rights

right file directory
r read from file read content of a directory
w write into file create, delete or rename files in a directory
x execute file enter into a directory

rights are specified for:
individual owner group owner others
r w x r w x r w x

notation:
rwxrwxrwx or 777

Example:
rw-r--r-- or 644

35

Evaluation of access rights
access rights are evaluated according to the effective owner of a process
(EUID or EGID)

UIDO=individual owner of file
GIDO= group owner of file

EUID = = 0

EUID = = UIDO

EGID = = GIDO

Bit set ?

Bit set ?

Bit set ?

Fig. Access right check

superuser

noyes

yes

access denied
odepřen

access allowed

no

yes no

noyes

noyes

yes no

Example
If access rights to a file are set

---rwxrwx
the owner of the file can’t read , write or execute the file, but the others can.

36

Change of effective user by user s-bit:
If a file has user s-bit set, then before start of its execution, the EUID of process
is set to UIDO of the file.

Change of effective group by group s-bit:
If a file has group s-bit set, then before start of its execution, the EGID of
process is set to GIDO of the file.

Fig.Writing into user table

waking up and
ouput of
prompt

wait()

fork()

EUID = 100
exec(passwd)
EUID = 0
asking for new password
writing new password into/etc/passwd
exit()

/bin/passwd (UID=100)/bin/csh (UID=100)

Sticky bit: t-bit
is set together with access rights

Its meaning:
regular executable files: page table is maintained after exit of program
directories:
no meaning (older systems)
or possibility to write into directory but not to delete files of other owners

37

Setting access rights:

s s t r w x r w x r w x
1 0 0 1 1 1 1 0 1 1 0 1
 4 7 5 5

system call:
chmod(“/home/novak/prog“,04755);

command:
chmod access_rights file

Example
$chmod 644 s1 sets access rights of s1 to rw-r--r--
$chmod 4755 s2 sets access rights of s2 to rwxr-xr-x and sets s-bit

38

user s-bit

group s-bit
sticky bit

number must be octal

Print of access rights
command: print:

ls -l file file type, access rights, number of links, individual owner,
group owner, size, time of last modification

ls -il file as ls -l and number of i-node
ls -lu file as ls -l , instead of time of last modification the time of

last use is printed
ls -lc file as ls -l , instead of time of last modification the time of

last modification of i-node is printed

r|- w|- x|-|s|S r|- w|- x|-|s|S r|- w|- x|-|t|T

others individual
owner

group
owner

user s-bit group s-bit t-bit

r- :
r r set
- r unset

w- :
w w set
- w unset

x - s S :
- x unset, s-bit unset
x x set , s-bit unset
S s-bit set, x unset
s x set, s-bit set

x - t T :
- x unset, t-bit unset
x x set , t-bit unset
T t-bit set, x unset
t x set, t-bit set

39

Creating and mounting filesystems
Creating a control file of a filesystem
#/etc/mknod /dev/c0d2s1 b 6 10
#/etc/mknod /dev/c0d2s2 b 6 11

Creating a filesystem
mkfs control_file number_of_blocks [: number_of_i-nodes]

Example
#/etc/mkfs /dev/c0d2s1 800000
#/etc/mkfs /dev/c0d2s2 1200000

Mounting a filesystem:
mount [-r] [-o options] control_file directory_of_mounting

-r only reading of mounted files is allowed
options:

nosuid effect of s-bits is blocked for mounted files
noexec no mounted file can be executed
nodev no mounted control file can be used as control file

umount control_file | directory_of_mounting

lib

//

passwdgroup

usrdev

rc.d

vmuni
x

etc bin

novakdvorak bilynovy

 /

Fig. Mounting a filesystem

mounting

40

major
number

minor
number

Security risks of s-bits

• If a user once breaks superuser password, he can hide a shell with set s-bit
and superuser ownership under unsuspicious name somewhere in the file
system for future intrusion.

• Therefore new files with set s-bit and superuser ownership are potentially
dangerous and system administrator should look for them regularly.

For searching the system program find can be used
find / -user root -perm -4000 -print

System call chown()

• in some OS users can’t use chown() at all

• in the other OS s-bit is during chown() system call reset

Security risks concerning mounting filesystems

• control I/O file with UID=0 might be mounted

• shell with s-bit and superuser ownership might be mounted

Security risk prevention
• in older OS only superuser can mount filesystems

• in newer OS user can carry out only restricted mount
mount control_file directory_of_mounting

A user can’t specify options of mounting.
The options are taken from file /etc/fstab whose content can change only
superuser.

41

Unix processes

User context: text, data, stack, content of user registers
Systems context: process table, user area (u-area), content of system registers,
content of system stack, page table

Process table contains:
• PID (process identification)

• Process state (for example Ready to Run, Asleep in memory etc.)

• Event descriptor when the process is in sleep state

• Field of signals (for each signal is reserved one bit)

• Pointer to page table (page table defines allocation of process in main
memory)

• Pointer to u-area on disc

• Process identifiers, which specify the relationship of processes to each other
(i.e. identifiers of parent process, child processes etc.)

• Various timers which count process execution time and utilization of system
resources

• Scheduling parameters for evaluation of priority of the process

u-area contains:
• Real and effective user ID and group ID (UID, EUID, GID, EGID)

• Current directory and current root directory

• Descriptor table

• I/O parameters

• Signal handlers

• Control terminal

• Error field (records errors encountered during a system call)

• Return value field (contains the result of a system call)

42

Process states

4 3

5 6

8

9

swap out fork

New process

Ready to run,
swapped

Ready to run
in memory

sleep

Kernel
running

User running

Preempted

wakeup

wakeup

Fig. Process state transition

7

1

2

reschedule

preempt

reschedule

system call,
interrupt

interrupt

return

Asleep,
swapped

Asleep in
memory

swap out swap in

Zombie

exit

43

Process in asleep state
• When process runs in kernel mode and some condition necessary for its

further execution is not fulfilled, the process is blocked (put into asleep
state)

• Process will wait in asleep state till the event “condition is fulfilled“
occurs.

Process for example needs
• data from disc

• some buffer which is locked

• exit of some another process etc.

Process asleep
Algorithm sleep_on(event)
• Change of process state is written into process table.

• Process is removed from Scheduler table.

• Process is put into a cue in Asleep process table. Asleep process table is
organized according to the events which processes are waiting on

waiting for i-node

waiting for terminal
waiting for end of I/O

waiting for buffer

i-node free
end of I/O
terminal answer
buffer free
event

address

w

x

v
z
y

Process B

Fig. Asleep process table

Process A Process C

44

Process wake up
As soon as an event of Asleep process table occurs, OS will wake up all
processes of its cue.

Algorithm wake_up(event)
1. Change of process state is written into process table
2. Process is removed from Asleep process table
3. Process is put into a cue in Scheduler table

Process C Process B Process A

locks buffer (I/O
disc transfer)

buffer is locked, process
goes to sleep_on()

buffer is locked, process
goes to sleep_on()

buffer locked, process
goes to sleep_on()

 buffer is unlocked process is awaken process is awaken

process falls asleep
(e.g because of page fault)

process locks buffer

process is scheduled

process is scheduled

process is scheduled

process is awaken process unlocks buffer

process is scheduled

process is awaken

Fig. Sleeping processes

45

Scheduling
• Processes are scheduled according to their priority
• Priority is a positive or negative number or zero

• The process with smaller priority has higher scheduling priority

Evaluation of priority

Processes, which will run in user mode:

priority = base + CPU_usage

user can set value of base by system call nice() to some positive value

CPU_usage is a parameter, that value is stored in process table:
1. When process is scheduled CPU_usage=0
2. At every time tic

 CPU_usage= CPU_usage+1
3. Before each evaluation of priority

CPU_usage=CPU_usage/2

When priority is evaluated?
• Priority is evaluated at the moment of process registration in the scheduler

table.

• Then the priority is updated every 1sec.

• Priority is also evaluated if process returns from kernel running state into user
running state.

Priority of a process that will run in user mode is positive

46

Processes that will run in kernel mode:

• These processes had to run in kernel mode and had to fall in asleep state (The
reason: process running in kernel mode can’t be preempted!)

• Priority is a negative number that corresponds to the event that caused the
process to fall asleep

Priority of a process that will run in kernel mode is negative

 End of I/O transfer from disc
I/O buffer unlocked

Terminal input
Terminal output

Exit of child process

low scheduling priority

-5
-4
-3
-2
-1
 0
 1
 2

hight scheduling priority

Fig. Scheduler table

Processes which will
run in kernel mode

Processes which
will run in user

mode

priority

47

Allocation of processes in memory

Unix uses the technique known as paging
(historically Berkeley based OS used paging and SYSTEM V based OS used
paging combined with segmentation)

Necessary technical support of processor:
Processor must have address unit with dynamic address translation (DAT),
controlled by page table.

 OC Operand

Registers

Translation of logical
address to physical address

by means of page table

Address buffer

Register of
page table

DAT

+

efective address =
logical address

physical address

Fig. Address unit with DAT

48

Activities of address unit:
• If the row of page table is valid (P=1) address unit translates logical address

to physical address

• If the row is not valid (P=0) address unit generates page fault interrupt
• If the process writes into a page, address unit sets the change bit (Z=1)

Address unit has associative cache memory for caching used rows of page table
(so called TLB, Translation Lookaside Buffer)

 page displacement

Page table
register

 frame displacement

 P RWX Z block frame

physical address

Fig. Translation of logical address to physical address

logical address

Page table

49

Allocation of memory:

Hash
table

Start of free
frame list

 block number RC pointers

frame 2
frame 1
frame 0

block number

RC number of pointers from page table

Fig. Memory map

1. When process is created, OS builds up data structure of its page table and
initializes it. For text pages and initialized data pages OS writes down
corresponding numbers of blocks. OS also set bits P, R, W, X, Z.

2. If process uses address inside a page that row in page table is not valid,
address unit generates fault page interrupt (When process starts running, it has
no valid row of page table).

3. After interrupt, fault page handler allocates for the page a frame in memory.
4. If it is necessary, the fault page handler initiates reading of the page content

into allocated frame from disc. (Processes share text pages and initialized
data. Therefore some pages can be already in memory and their reading is not
necessary).

5. When the process is scheduled next time, address, which had caused interrupt,
is translated and process continues running

50

Page fault handler activity

The page contains

 Number of the free frame
is written into page table

 A free frame is taken and
zeros are written in it

 Reading of the block from disc
is initialized

 Free frame is taken and its
number is written into page table

 Copy number of frame from
memory map into page table

noninicialized data, stack text, inicialized data

Corresponding block is in
memory in some frame

no yes

Fig. Page fault handler activity

Page is in the swapping
area

no yes

51

Deallocation of frames:

• it is done by process page_daemon (PID=2)

• page_daemon is running in regular intervals (i.e. 200 ms)

• page_daemon keeps number of free frames between low and high limits

• page_daemon is also activated if there are no free frames available

Text or inicialized data

are in the frame

Content of frame was
changed

Block in swapping area is
allocated for the frame

Content of the frame is
written into swapping area

Free block in swapping area is
allocated and its number is written

into the page table

P=0

Put the frame on free
frame list

yes
no

no yes

no yes

Fig. Deallocation of frames

52

Allocation of processes in main memory

STACK

DATA DATA

TEXT,
INIT.

DATA

STACK

Fig. Processes A a B are controled by the same program

Main memory

Proces B Proces A

TEXT,
INIT.

DATA

53

Unix system calls for process control

Process creation

• The first process after system load is created by the kernel (usually swapper
(PID=0))

• All other processes are created by the same way: one of the existing processes
calls the system service fork()

• Therefore each process has its parent process (swapper is the only exception)

• History of process creation could be described by a graph

OS can reconstruct this graph from information maintained in the process table

init (PID=1)

getty inetd page_daemon (PID=2)

bash (login shell)

swapper (PID=0)

Fig. Graph of history of process creation

54

Process group (PGRP)
• Every process is a member of one process group (OS maintain process PGRP

in the process table)

• Every process group has its process group leader

• Leader of a group is a process for which is PID=PGRP

How a process can become a process leader?
• The first created process has PID=PGRP
• After fork() the child process inherits context of parent process and therefore

also its process group

• Each process can ask OS for process leadership by system call setpgrp().
After this call OS sets PGRP of calling process to its PID. Therefore after this
call the calling process will become a leader of a new process group

getty (PID=101,
PGRP=101)

ls (PID=110,
PPGR=100)

prog& (PID=120,
PGRP=120)

bash (login shell)
PID=100, PGRP=100

init (PID=1, PGRP=1)

swapper (PID=0, PGRP=0)

inetd page_daemon
(PID=2, PGRP=1)

Fig. Process groups

55

Control terminal

• User processes usually have control terminals

• Control terminal is always accessible by special driver /dev/tty
• System processes that are running in the system, fulfill some system tasks and

have no control terminal, are called daemons

How a process can gain a control terminal:

If:
• Process is a process group leader

• Process has no associated control terminal yet

• Process has opened control file of a terminal (i.e. it calls system service
open(/dev/tty1, . . .))

• The opened terminal has not been associated to any other process as a control
terminal

Then:
1. The opened terminal will become a control terminal of the process (control

file of the terminal is written into u-area of the process, into the item control
terminal)

2. Process will become control process of the terminal (the couple PID of the
process and control file of the terminal is written into terminal driver data
structure)

56

 PID

 /dev/tty1

device driver

process table

control terminal

u-area

 PID /dev/tty1

The mechanism of control terminal enables these actions of OS:

1. After exit of a process, that is process group leader and has control terminal,
OS sends signal SIGHUP to all processes of its group

2. After switching off the control terminal, OS sends signal SIGHUP to all
processes, that are members of process group of its control process including
control process (control process must be process group leader).

Thus processes running on the background are not canceled neither after logout
nor after the terminal is switched off.

57

System call fork()
Creation of a new process (child process)

int fork(void);
pid=fork();

OS creates a copy of the process that called fork().

OS activity during fork() system call
1. OS allocates a free row in process table for the child process. It copies items
from parent process table row into child process table row with these exceptions:

child process has its own PID,
own pointer to u-area,
 own pointer to page table

2. OS allocates a u-area on disc.
3. OS creates new page table for the child process. At the beginning the contents
of data and stack areas are in the both processes the same. During further run
they may differ.
4. OS writes into item return system call value in u-area:

child PID in parent process
0 in child process

I.e. system call in parent process returns PID of the child process and in the
child process it returns 0. Therefore although parent and child processes are
controlled by the same program, they could be controlled by different parts of it.

Example
#include <stdio.h>
main(){
int pid;
if ((pid = fork())==0){

printf("\nChild process:PID=%d Parent PID=%d\n",\
getpid(),getppid());

pause();
}
printf("\nParent process:PID=%d Child PID=%d\n",\

getpid(),pid);
exit(0);
}

58

System call exit()
Termination of a process. After exit() call the process will be in zombie state.

void exit(int status);
exit(status);

OS activity during exit() system call:

Process is a
group leader

State of process is changed to zombie

Signal SIGCHLD is sent to the parent process

Allocated frames of memory are put on free list

All opened files of exiting process are closed

PPID of all child processes is set to 1

OS sends SIGHUP to all
processes of its process group

OS sets PGRP=0 in all
processes of its process group

Process has
control terminal

no

no

yes

yes

59

System call wait()

Waiting for exiting of child processes and their processing.

int wait(int *stat_adr);
pid=wait(stat_adr);

Processing of a child zombie process means:
• PID of the zombie child is put into return variable pid
• least significant bits (bits 0-7) of status (status is the parameter of

exit() call of the zombie child) are put into 8-15 bits of stat_adr
• Counts of utilization of system resources of the zombie child process are

added to those of the parent process

• Zombie child process is deleted from the process table

60

OS activity during wait() system call

Process falls
asleep

Exists at least
one child

Exists at least
one zombie child

yes

yes

yes

no

no

no

signal(SIGCHLD, SIG_IGN)
was called

Processing child
zombie process

SIGCHLD

pid = -1

61

System call execve()

Change of text of a running process (start of a new program)

int execve(char *path,char *argv[],char *envp[]);
ret=execve(path,argv,envp);

path is a pointer to disc file with new program

argv is a pointer to a field of pointers, which point to character
strings. The strings will be accessible after text change. First string
must be the name of the file containing new text. The last pointer in
the field must be NULL pointer.
envp is a pointer to a field of pointers that points to character strings.
The string are usually of the form X=Y and will be accessible after
text change. The last pointer in the field must be NULL pointer.

New program can access in execve() call specified strings only if it is written as:
main(argc,argv,envp)
int argc;
char *argv[];
char *envp[];
{
. . . .
}

OS will put into argc the number of pointers in argv field (not counting
NULL pointer)

Example
 execve(“/usr/bin/ls“, & v, & p)

NULL NULL

VAR=20 PR=10 -al ls

62

OS actions during system call execve()
• OS checks if path is executable program and if process has access rights for

its execution

• If file path has s-bit set, OS will change process EUID or EGID to the
owner of the file

• OS copies all strings specified by argv and envp into kernel stack

• OS create new page table for the process (the old page table is deleted)

• OS copies all strings from kernel stack to new user stack

• OS puts the start address of the new program into instruction counter

Example
List of environmental variables of a shell.
#include <stdio.h>
main(argc,argv,envp)
int argc;
char *argv[];
char *envp[];
{

int i;
for(i=0;envp[i] != (char *) 0; i++)

printf(“%s\n“,envp[i]);
exit(0);

}

Example
Starting program /bin/date during execution of a program
main()
{

char *(argv[2]);
argv[0] = "date";
argv[1] = ((char *)0);
execve("/bin/date",argv,(char *)0);

}

63

System call kill()

Processes send signals to the other processes by system call kill(). Also kernel
can send a signal to a process.

There are 32 signals.
In process table OS reserves for each process a bit field 32 bits long (for each
signal one bit).

Superuser process can send signals to all processes (with some exceptions: it can
not send signals to several important system processes, which cannot be
aborted).
User process can send signals only to a such process, UID of which equals to
EUID of the sending process.

Syntax of system call kill()

int kill(int pid, int sig);
ret=kill(pid, sig);

sig number of signal

pid has the following meaning:

if pid > 0 , signal is sent to process PID = pid
if pid = 0 , signal is sent to all processes of the same
process group
if pid = -1 , signal is sent to all processes

if pid < -1 , signal is sent to all processes of the process
group -pid

Return value ret=0 if the call is successful. Otherwise ret=-1 .

64

Sending of a signal:
1. Kernel sets corresponding bit in signal bit field in process table.
2. If process is asleep, kernel wakes it.

Processing of a signal:
Received signals are always processed before process continues running.
Processing depends on whether the reaction on a coming signal was specified by
system call signal() beforehand or not:
1. If not, default action is taken. For most signals default action means abortion
of the process. For some signals (e.g. SIGCHLD, SIGCNT) default action
simply means to do nothing, i.e. the process is only waked up.
2. If yes, the action is specified in signal() system call. It could be:

a) to ignore the signal
b) to reset to default action
c) to execute signal handler code

Signal handler code must be part of the executed program.

Syntax of system call signal()

void(*signal(int sig,void(*func)(int)))(int);
last_func=signal(sig,func);

 sig number of signal
func

SIG_IGN Ignore signal (signals 9 and 19 cannot be ignored)

SIG_DFL Reset default action

Pointer to signal handler. Signal handler has one formal variable of
type int. When signal handler is executed, number of the sent
signal is accessible in this variable.

65

Example
Program that can’t be killed by signal 2. (If this program is running on
foreground, it can’t be canceled by CTRL+C).

#include <signal.h>
#include <stdio.h>
void handler(sig)
int sig;
{

if (sig == 2)
printf("I can´t be killed by signal 2\n");

signal(2,handler);
signal(14,handler);

}
main()
{

int i;
signal(2,handler);
signal(14,handler);
for(i=0;i<100;i++){

alarm(5);
pause();
printf("hello\n");

}
}

66

Important signals:

1 SIGHUP
a) After finishing of a process, that is process group leader and has control

terminal, OS sends signal SIGHUP to all processes of its process group.
b) After switching off the control terminal, OS sends signal SIGHUP to all

processes that are members of process group of its control process.
2 SIGINT
is sent by the kernel after pressing interrupt key on keyboard (usually CTRL+C).

9 SIGKILL
is used for reliable process exit. This signal cannot be caught by signal() system
call.
14 SIGALRM
is sent by kernel after system call alarm(n).
15 SIGTERM
is used for standard process exit. Program kill sends this signal, if number of
signal is not specified.
17 SIGCHLD
is sent by the kernel to a parent process if its child process exits.
18 SIGCONT
is used to awake a process, which fell asleep after SIGSTOP signal.

19 SIGSTOP
is used to make a process to fall asleep. Signal could not be caught.

67

How shell executes commands?

Command exit

Command

Shell is asleep after wait()

Child shell

Shell waits for input from terminal

signal SIGCHLD

exit()

exec()

fork()

Fig. Running command on the foreground

Command

Child shell

Shell waits for terminal input

exit()

exec()

fork()

Fig. Running command on the background Command exit

68

Unix file manager system calls

 file subsystem

buffer cache

block device

drivers

character

device drivers

 hardware

 hardware control

 libraries

 system call interface

memory
management

inter-process
communication

scheduler

process
control

subsystem

 user programs

Kernel

Fig. Block structure of the system kernel

69

System calls

Open or create and open a file

int open(char *pathname,int flag, int mode);
fd=open(pathname,flag,mode);

pathname name of the file to be opened

flag defines mode of opening

O_RDWR open for reading and writing

O_RDONLY open for reading only

O_WRONLY open for writing only

O_CREAT create the file if does not exist. Mode
specifies permissions. The flag has no
meaning if the file already exists.

O_EXCL open fails if this bit and O_CREAT bit are
set and file exists (exclusive open)

mode specification of access rights if new file is created

open() returns a file descriptor fd for use in other system calls

Example

fd=open(”/etc/group”, O_RDWR|O_CREAT, 0666);

70

descriptor

number of references open mode offset

 header data

 Process A

i-node cache

Process table

u-area

File table

Fig. File open

descriptor table

OS actions during open() call:

1. It looks through directories for i-node number of the file.
2. It checks the access rights.
3. If i-node is not in i-node cache, it copies it there.
4. It allocates the first free row in descriptor table.
5. It allocates the first free row in file table.
6. In descriptor table it sets pointer to file table.
7. In file table: it sets pointer to i-node cache, it sets open mode and it initializes

the number of references from descriptor table to 1 and the offset to zero

71

Example
#include <stdio.h>
main()
{

int fd1,fd2,fd3;
fd1=open(”/etc/hosts”,O_RDWR);
fd2=open(”/etc/passwd”,O_RDONLY);
fd3=open(”/etc/passwd”,O_WRONLY);
continue:
.

}

 /etc/hosts

 /etc/passwd

 1 O_RDWR 0

 1 O_RDONLY 0

 1 O_WRONLY 0

 0

 1

 2

 3

 4

 5

File table

Descriptor table

i-node cache

Fig. File open

72

Access rights of a new created file

For each process system maintains a parameter called mask
Access rights of a new created file are set:

access_rights = mode ∧ ¬mask

Example
mask = 022
fd=open(”/usr/smith/data”, O_RDWR|O_CREAT, 0777);

If file /usr/smith/data does not exist, it will be created with access
rights:

access_rights = mode ∧ ¬mask= 0777∧ ¬0022=0755

Mask set:
int umask(int mask);
old_mask=umask(mask);

73

File close

int close(int fd);
close(fd);

Close() closes the file with descriptor fd

OS actions during system call close()
in descriptor table: OS deletes the row of closing descriptor fd .

in file table: OS decreases the number of references by 1. If the number of
references equals to zero, OS deletes the row from file table.
in i-node cache: If file table row is deleted, OS decreases the number of
references to i-node buffer by 1. If the number of references equals to zero, OS
puts the i-node buffer on free list.

File delete

int unlink(char *pathname);
unlink(pathname);

Unlink() removes the directory entry.

74

Descriptor duplication

int dup(int fd);
newfd = dup(fd);

Dup() duplicates specified file descriptor. The row of descriptor fd is copied
into the first free row of descriptor table.

Example
#include <stdio.h>
main()
{

int fd1,fd2,fd3;
fd1=open(”/etc/hosts”,O_RDWR”);
fd2=open(”/etc/passwd”,O_RDWR”);
fd3=dup(fd2);
continue:
.

}

 /etc/hosts

 /etc/passwd

 1 O_RDWR 0

 2 O_RDWR 0

 0

 1

 2

 3

 4

 5

File table

Descriptor table

i-node cache

Fig. Descriptor duplication.

75

Read and write a file

int read(int fd,char *buffer,unsigned count);
number = read(fd, buffer, count);

fd descriptor

buffer user read buffer

count number of bytes to read

Read() reads up to count bytes from the file fd into the user read buffer
buffer. Read() returns the number of bytes actually read. Read() during
reading updates offset.

int write(int fd,int buffer,unsigned count);
number = write(fd, buffer, count);

fd descriptor

buffer user write buffer

count number of bytes to write

Write() writes up to count bytes into the file fd from the user buffer buffer.
Write() returns the number of bytes actually written. Write() during writing
updates offset.

76

Example

Function getchar() reads one character from standard input and returns its value.
When reading behind the end of the file, it returns EOF (usually -1).

Following program copies standard input on standard output:
#include <stdio.h>
main()
{

int c;
while((c=getchar()) != EOF)

putchar(c);
return 0;

}

getchar() can be realized:

#include <stdio.h>
#define CMASK 0377
int getchar()
{

char c;
return (read(0,&c,1) >0 ? c & CMASK : EOF);

}

77

Direct access to a file

int lseek(int fd,int offset,int reference);
position = lseek(fd, offset, reference);

fd descriptor

offset number of bytes

reference reference position:

the beginning of the file (reference = 0)

current position (reference = 1)

the end of file (reference = 2)

System call lseek() changes offset (the position of the read-write pointer) for the
file fd and returns the new value. The value of reference defines the
reference position for offset counting.

78

Communication support

1. Communication support for TCP/IP protocols was originally built into
Berkeley Unix in early eighties.

2. Very soon it was built also into System V Unix and other OS.

Sockets

1. OS supports communication by means of sockets.
2. Sockets are data structures by means of which processes running on

different systems exchange data.

Input or output data that go through sockets are sequences of bytes.
Processes can read and write socket data in the similar manner as any other I/O
data.
Thus socket data are considered to be data streams.

79

Socket

Klient

write() read() connect()

Creating
of a

socket:
socket()

Socket

Server

read() write()

Creating
of a

socket:
socket()
bind()
listen()

Fig. Communication between processes by means of sockets

Communication model is client-server

Server:
1. It creates socket and initializes its parameters (socket(), bind(), listen())
2. It calls system service read(). As soon as a request comes, server answers

by the system call write().
Server process is running all the time.
When server does not execute client’s request, it is in asleep state.

Client:
It is running only when user has some request to a server.

1. Client creates socket (socket())
2. Client builds up connection with server (connect())
3. Client sends request (write())
4. Client waits for an answer (read())

80

Comparison of RM OSI and Unix communication model

Application Layer

Transport Layer

Internet Layer

Network Acces Layer

Relation Layer
 Transport Layer

RM OSI model

Data Link Layer
 Physical Layer

Network Layer

Aplication Layer
 Presentation Layer

Unix communication model

Communication process
(Sending data accross transport channel (e.g. Ethernet))

Ethernet IP TCP Data Ethernet IP TCP Data

 IP TCP Data

 Data

 TCP Data

Transport channel

Process recieving data Process sending data

Application layer

Network Access Layer

Transport layer

Internet Layer

 IP TCP Data

 Data

 TCP Data

Family of protocols TCP/IP

81

User process User process

Ethernet (Token Ring, etc.)

RARP ARP IP ICMP

TCP UDP

Application Layer

Network Access Layer

Transport Layer

Internet Layer

TCP segments, UDP packets

datagrams

frames

Difference between TCP and UDP protocols
TCP:

• TCP protocol grants reordering of received packets

• If some packet is missing, it asks for its resending
UDP:
It does not provide such facilities, but transfer using this protocol is quicker and
more efficient.

Protocol ARP
Resolves the relationship: Internet address – local net address (e.g. Ethernet
address)
All hosts store this relationship in their ARP caches
ARP request: A host, which needs to know Ethernet address of an a host with
specified Internet address broadcasts ARP request.
Host with this specified Internet address will broadcast ARP reply, in which it
will put its Internet address together with its Ethernet address. All hosts in local
net will write this information into their ARP caches.

82

IP address

IP address has 32 bits. It consists of net address and host address.
First 3 bits define type of address.
IP address is divided into net address and host address according to its type.

 193 84 34 18

IP adress : 193.84.34.18 (hex C1542212)

8 bits 8 bits 8 bits 8 bits

IP address types

First
byte

Number
of nets

Address
type

Number
of hosts

 0 224 27

0-127

Net address Host address

A

 1 0 216 214 128-191

Net address Host address

B

 1 1 0 28 221 192-223

Net address Host address

C

 1 1 1 224 -255

reserved

D

83

Internet addresses with special meaning

1. Net address: all bits in host part equal 0 (e.g. 151.30.0.0)
2. Loopback address: 127.0.0.0
3. Default direction of routing: 0.0.0.0
4. Broadcast address: all bits in host part equal 1 (e.g. 151.30.255.255)

Subnets

1. Lack of Internet addresses led to incorporation of subnet facility into IP
protocol (Different local nets must have different internet addresses)

2. Host part of address is divided into subnet address and host address in this
subnet. Division is done according to a netmask.

 Subnet address Host address
 in subnet

Netmask

Host address Net address

1 1 1 . 1 1 1 1 0 0 0 0
0

Example
In the net 193.84.34.0 the first 3 bits of the host part form address of subnet.
Then netmask must be set to 255.255.255.224.
Broadcast address must be set to 193.84.34.31.

84

Routing

1. Routing facility provides Internet layer.
2. Internet consists of local nets, which are connected via computers called

routers or gateways.
3. Routers are able to transfer datagrams from one local net to another. Transfer

of datagrams is also called datagram switching (packet switching).

alfa

mars
(router)

peter paul john

193.84.35.4

193.84.34.3 193.84.34.2 193.84.34.1

193.84.34.7

193.84.35.1

beta

193.84.35.2

gamma

193.84.35.3

Internet

OS makes routing according to its routing table

85

Configuration of a host net interface
IP address is written into Internet layer of OS and routing table is initialized.

ifconfig interface IP_address

ifconfig associate IP_address with the interface interface and activates it
Standard names of interfaces:
lo0 loopback
le0, le1, . . . Ethernet interfaces

Example (host john)

ifconfig le0 193.84.34.1
or if net is divided into subnets:

ifconfig le0 193.84.34.1 netmask 255.255.255.224\
broadcast 193.84.34.31

Routing table after ifconfig command

Destination Gateway Flags Refcnt Use Interface
127.0.0.1 127.0.0.1 UH 1 140 lo0
193.84.34.0 193.84.34.1 U 12 4523 le0

List of routing table
netstat -nr

U (up) routing is active

H (host) only one host is reachable

G (gateway) routing via router

After configuration of host net interface, the host can communicate in the local
network

86

Add communication via router

Routing could be:
Static - Routing table is set by command route, usually contained in one of start
scripts
Dynamic - Daemon routed or gated is running. Daemon configures route table
in collaboration with other routers in the net according to the immediate
situation. Special protocols for this task are used.

Static routing
route [-net] add target gateway 1 | 0

target IP address of target host or target net or default
gateway IP address of the router
0 gateway is net interface of local host
1 gateway is another host in local network

Delete row from routing table
route [-net] del target gateway

Example (host john)

route add default 193.84.34.7 1

Routing table after ifconfig command and route command:

Destination Gateway Flags Rfcnt Use Interface
127.0.0.1 127.0.0.1 UH 1 140 lo0
default 193.84.34.7 UG 8 3765 le0
193.84.34.0 193.84.34.1 U 12 4523 le0

87

Example
Configuration of mars

ifconfig le0 193.84.34.7
ifconfig le1 193.84.35.4
route add -net 193.84.35.0 193.84.35.4
route add -net 193.84.34.0 193.84.34.7

Routing table of mars after configuration
Destination Gateway Flags Rfcnt Use Interface
127.0.0.1 127.0.0.1 UH 1 120 lo0
193.84.34.0 193.84.34.7 U 17 8508 le0
193.84.35.0 193.84.35.4 U 6 7642 le1

Example
Net 193.84.35.0 is connected to Internet via router gamma (193.84.35.3).
Then into routing table of mars routing via router gamma must be added

route add default 193.84.35.3 1

Routing table of mars after configuration
Destination Gateway Flags Rfcnt Use Interface
127.0.0.1 127.0.0.1 UH 1 120 lo0
193.84.34.0 193.84.34.7 U 17 8508 le0
193.84.35.0 193.84.35.4 U 6 7642 le1
default 193.84.35.3 UG 11 9876 le1

88

Ports
On a host usually more servers are running. For identification of servers
numbers called ports are used.
A lot of Internet applications have been designed and many of them are in use.
These applications have:

• permanently assigned ports
• dynamically assigned ports

Applications with permanently assigned ports are e.g. ftp, telnet, www, finger
Applications with dynamically assigned ports are based on Sun Microsystems
software package RPC (Remote Procedure Calls), e.g. applications NFS
(Network File System), NIS (Network Information Service), etc.

Port assignment to applications with dynamically assigned ports:
Daemon portmapper must be running in the system. If server of an application
starts running, it must ask portmapper for port number. The given port number is
registered in portmapper table.
Client must at first build up connection with portmapper and ask it for port
number of the server. After receiving the port number, client could establish
connection with the server.

Identification of connections
On a host many servers and clients with established connections to other hosts
can be running. Connections are identified by means of associations.
Association:
 (protocol, local address IP, local port, remote address IP, remote port)

89

Example
ftp client at john tries to connect to ftp server at mars

protocol: tcp
remote IP : mars
remote port: 21 (number reserved for ftp service)
local IP: john
local port : here OS puts a number unique at john (e.g. 1000)

association:
(tcp, mars, 21, john, 1000)

If another process on john will ask ftp server on mars then a new association
may be:

 (tcp, mars, 21, john, 1001)
If some process on peter will ask ftp server on mars then association may be:

(tcp, mars, 21, peter, 1000)

klient 1

 klient 2

client

server
(child process)

server
(child process)

server
(child process)

server

peter

john fork() fork()

mars

Fig. Process associations.

(tcp, mars, 21, peter, 1000)

(tcp, mars, 21, john, 1000)

(tcp, mars, 21, john, 1001)

Building up connection

90

Only some servers are running all the time: e.g. routed, named, name server,
sendmail etc.

Most servers begin to run after a request has come: telnet, ftp, talk, finger etc.
These servers are started by Internet demon inetd

Configuration files of inetd:
/etc/inetd.conf
/etc/services

91

Domain Name System (DNS)

Using IP address is cumbersome. Therefore DNS was developed.
Hosts are organized into hierarchical domain structure.

root

edu cz uk com

czu

pef

peflab e2_02
1

e2_01

vse cvut

Host identification
• The path going to a host from root identifies it in the domain structure.

• Root is denoted as .
• Path is written as a host name following by the sequence of domain names

that are on the path from the host to the root.

• Names are separated by dots.

• The root domain . is usually omitted.

Example
Host peflab in domain pef is identified by the path
peflab.pef.czu.cz

92

Name servers
Every domain has its primary name server and one or more secondary name
servers.
Secondary name servers maintain copies of primary server data. They read
primary name server data periodically and substitute primary name server if
necessary.
Primary name server must know:

• IP addresses of all hosts of its domain

• IP addresses of name servers of all its subdomains

Communication using domain names
If any process wants to communicate with a host that is identified by its domain
address, it must at first find out its IP address.
In order to do that, it must ask some name server (usually the name server of its
domain):

• If the host with unknown IP address resides in the same domain as the asked
name server, the answer is straight.

• If not the name server will find out the IP address in collaboration with name
servers of other domains.

OS support communication with name server by functions contained in resolver
library.
The main function that establishes connection to the name server, gives it
domain address and takes over IP address is gethostbyname()
Resolver has to be configured:
Configuration files are
 /etc/host.conf /etc/resolv.conf /etc/hosts
 Usual configuration (specified in /etc/host.conf)is:

1. Look through file /etc/hosts
2. If the IP address has not been found, ask name servers specified in

/etc/resolv.conf

93

Network Information System (NIS)

NIS enables sharing of some important chosen system files, e.g. /etc/passwd ,
/etc/group , /etc/hosts etc.
NIS is based on Sun Microsystems remote procedure call software package. Its
original name was Yellow Pages.

NIS architecture
1. NIS architecture is client-server.
2. NIS server creates and maintains shared files.
3. NIS clients are running processes that ask NIS server for data.
4. NIS server shared files are organized in so called maps that enable direct

access to their data. For example /etc/passwd is organized in two
maps: passwd.byname that enables direct access using username
passwd.byuid that enables direct access using UID

Content of a shared file can be listed by command ypcat
A change of a password in the shared password file can be done by command
yppasswd

94

Network File System (NFS)

NFS enables to access to files that reside on a remote host in the same manner as
to the local files
User can mount directories of a remote host in the similar manner as local
directories, i.e. using command mount

Example
mount -t nfs mars:/usr /home

User can mount from a remote host only such directories that are on remote host
exported.
Export of directories on the remote host is done by proper setting of the file
/etc/exports

Export could be set with different restrictions, e.g. directory can be exported
only for reading.

NFS architecture
NFS architecture is client-server
Server is realized by daemon mountd and one or more daemons nfsd (for each
client one nfsd daemon must be running)
Client is realized by daemons biod. Some OS support client architecture directly
and daemons biod are not used.

95

Example
Using NIS and NFS in computing laboratory

mars

 NIS server

 NFS server

 /usr

e2_09

 /home

e2_02

 /home

e2_01

 /home

export of directory
mars:/usr

96

References

Bach, M.J., 1986: The Design of the UNIX Operating System, Englewood Cliffs,
Prentice Hall.
Hunt, C., 1994: TCP/IP Network Administration, O´Reilly&Associates.
Leffler, S.J., McKusick, M.K., Karels, M.J., Quarterman, J.S., 1989: The Design
and Implementation of the 4.3BSD UNIX Operating System, New York ,
Addison-Wesley.
Tanenbaum, A., 1992: Modern Operating Systems, Englewood Cliffs, Prentice
Hall.

97

	Contents
	Operating system (OS)
	Design of the Unix OS (basic concepts)
	Unix filesystem
	Unix processes
	Unix system calls for process control
	Unix file manager system calls
	Communication support
	References

